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Abstract—Open-set face recognition is a scenario in which
biometric systems have incomplete knowledge of all existing
subjects. This arduous requirement must dismiss irrelevant faces
and focus on subjects of interest only. For this reason, this work
introduces a novel method that associates an ensemble of compact
neural networks with data augmentation at the feature level and
an entropy-based cost function. Deep neural networks pre-trained
on large face datasets serve as the preliminary feature extraction
module. The neural adapter ensemble consists of binary models
trained on original feature representations along with negative
synthetic mix-up embeddings, which are adequately handled by
the designed open-set loss since they do not belong to any known
identity. We carry out experiments on well-known LFW and IJB-
C datasets where results show that the approach is capable of
boosting closed and open-set identification accuracy.

I. INTRODUCTION

Not only are face recognition systems sufficiently advanced
nowadays to be used in social networks or photo library
tagging, but also a leading mechanism to support govern-
ments [1], law enforcement agencies, and private compa-
nies [2]. Despite the significant recent progress, face recog-
nition remains limited when facing poor image quality, a
frequent condition in surveillance and CCTV environments. In
addition, few researchers have devoted their efforts to solving
problems that either require strong generalization or bounded
open space risk, a scenario in which input samples are far from
any known class and likely to represent unknown distributions.

Open-set face recognition characterizes the scenario where
anonymous individuals, unseen during training and enrollment
stages, only come into sight during evaluation time [3, 4].
As an illustration, one can think of immigration control at
airports taking advantage of automated gates and smart face
recognition. The system is expected to dismiss all law-abiding
passengers and alert the security personnel whenever criminal
offenders turn up. However, recent newspaper articles have
shown that people being misidentified is not a hypothetical
exercise but has actually occurred several times across the
United States [5, 6]. To make matters worse, false alarms
should be avoided by any means since a system identification
error may bias the security approach and mistakenly hold up
innocent people in custody [7].

OpenLoss Python Package: https://pypi.org/project/openloss/

Some late face recognition systems have tackled low-quality
images and major improvements have been made with the
introduction of specialized loss functions [8, 9, 10, 11].
Deep neural networks (DNN) are typically trained on large
datasets of public people before being applied to particular
face populations [2]. For this reason, the identification task
becomes intrinsically domain-adaptive as none of the individ-
uals selected to train the network composes the gallery set, a
collection that only contains subjects of interest, also referred
to as a watchlist. Therefore, they often fail to distinguish
whether an input face sample is enrolled in the gallery of
known individuals since they cannot foresee the unknown.

Several works explore transfer learning techniques or con-
sist of traditional machine learning algorithms fitted on deep
feature representations [4, 12, 13]. Hashing functions have also
been used to solve open-set face recognition tasks [14, 15, 16].
Günther et al. [7] take an existing pretrained deep backbone
and replaces its output classification layer with a Neural
Adapter Network (NAN). Other approaches rely on clustering
techniques that act as a filtering barrier to unknown sam-
ples [17, 18]. Despite all contributions, the aforementioned
methods present unbounded open-space risk [3] and are not
very well suited for rejecting unknown individuals as generally
required in the watchlist context.

Many investigators have examined the advantages of ensem-
bles: Ma et al. [19] developed an adaptive-boosting classifi-
cation framework but did not conduct experiments following
open-set protocols. Choi et al. [20] combined a collection
of deep neural networks with Gabor representations whereas
Vareto et al. [18] employed a clustering technique to filter out
dissimilar candidates before training a compact ensemble of
binary models. The former contains a collection of deep neural
networks and, in consequence, presents a high computational
complexity in both training and evaluation stages. Similarly,
the latter consists of an online training module that ends up
making its use in real-time tasks unfeasible.

Dhamija et al. [21] noticed that unknown features are
generally mapped near known classes and, with that in mind,
proposed a novel loss function that maximizes the entropy
of non-gallery samples. Data augmentation is widely adopted
to prevent overfitting and strengthen the domain generalization
capacity of DNNs [22]. In furtherance of modifying data in the
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feature space, Verma et al. [23] came up with an interpolating
strategy to generate new feature representations whereas Li et
al. [24] proposed a stochastic feature augmentation procedure
to perturb embeddings with Gaussian noise. None of the
previously mentioned works has been evaluated on face bench-
marks containing numerous identities and a limited number
of samples per class and, as a consequence, they are not an
accurate portrayal of realistic biometric tasks.

In this work, we propose a Neural Adapter Ensemble (NAE)
of binary learners to handle unbalanced datasets. Ensembles
are generally employed to reduce variance, minimize modeling
bias and then decrease overfitting [25]. During inference, NAE
aggregates the scores of each inner model and builds a final
ranking of candidates. Moreover, we introduce a margin-based
cost function called Maximal Entropy Loss (MEL) that not
only produces more rigorous decision boundaries for known
classes, but also increases the entropy for negative training
samples. Since MEL relies upon representative negative sam-
ples, we develop an Optimized Mix-Up (OMU) feature aug-
mentation method that synthesizes negative embeddings from
feature representations of different subjects enrolled in the
gallery set. The data augmentation contributes to the awareness
of unknown identities since including artificial embeddings
that are appropriately exploited by the cost function can
improve the network’s generalization performance [26].

We conduct experiments considering three pretrained face
recognition networks: ARCFACE [10], VGGFACE2 [27] and
AFFFE [28]. Results are obtained on two widely-explored
benchmarks, namely Labeled Faces in the Wild (LFW) [29] and
IARPA Janus Benchmark C (IJB-C)[30]. Seeing that LFW was
initially designed for the face verification task, we adhere to
the open-set protocol designed by Günther et al. [4]. Contrar-
ily, IJB-C specifies an open-set identification guideline named
TEST-4 that determines how face recognition algorithms must
be evaluated. We optimize the hyperparameters on LFW dataset
using AFFFE backbone as the feature representation module.
Then, the same parameters are employed to a subsequent
comparison on IJB-C with ARCFACE and VGGFACE2 as feature
descriptors to check its robustness to different domains.

The major contributions of our work are: (I) We present
a compact neural ensemble that replaces the computationally-
expensive retraining of DNNs for faster ensemble learning.
(II) We examine how the entropy-based loss and the feature
augmentation mechanism enable the ensemble to better dis-
tinguish known from unknown samples. (III) We carry out
a parameter selection evaluation to show that the very same
setting can be employed in more difficult domains, considering
different feature extractors and datasets.

II. PROPOSED APPROACH

A robust open-set face recognition system is expected
to determine the identity of those subjects who have been
previously enrolled in the gallery and reject the ones of no
interest. However, when deploying biometric applications in
the real world, experts must be aware that still and motion
probe images very likely present low-quality captures along
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Fig. 1. NEURAL ENSEMBLE AND ITS BASE LEARNERS. Each standalone
learner inputs features extracted with any deep network to learn parameters
that minimize an open-set loss function and maps samples from |G| individu-
als from the gallery set into two classes. For each learner, the ensemble keeps
a record of the identities that are randomly associated with class ⊙ (output
0) and class ⊕ (output 1) to later identify these people and reject unknowns.

with illumination variance and occlusion, to name a few [2].
These corrupted image samples obtained at the testing stage
tend to misguide biometric systems and, therefore, end up
defiling the identification process.

We design three mechanisms to address the aforestated
concerns: the Neural Adapter Ensemble (NAE) encompasses
binary neural networks and aims to establish a clear bound-
ary between subjects of interest and unknown faces. The
Optimized Mix-Up (OMU) augmentation synthesizes negative
samples at the feature-space level by interpolating repre-
sentations of different gallery-enrolled individuals. Maximal-
Entropy Loss (MEL) comprehends an entropy and margin-
based cost function that exploits negative samples derived from
the original gallery set or extrinsic datasets. NAE is capable
of boosting the predictive performance of each standalone
classifier by training multiple base learners and combining
their predictions [31]. OMU-made instances can enhance the
generalization capability of each binary model that composes
the ensemble. Additionally, MEL supports the network in
handling unknown samples by maximizing the entropy of
negative samples or penalizing the target class of known
samples with a specified margin.

A. Feature Extraction

Given an image sample x, the feature extraction module can
be defined as z = FΘ(x), a fragment of the pre-trained DNN’s
forward pass ŷ = Cψ ◦FΘ(x) = Cψ ◦FΘL ◦ · · · ◦FΘ1(x) with
classifier Cψ and L embedding layers in FΘ(x). This process
propagates image x forward up to the point prior to the last
fully-connected layer with softmax activation and outputs the
equivalent embedding z at that location. It is important to
make sure that the face image x is aligned according to the
requirements of the chosen DNN. Therefore, we rely on pre-
determined alignment and feature extraction pipelines [32].



B. Maximal-Entropy Loss

The Maximal-Entropy Loss (MEL) is a cost function that
addresses training samples in two different manners: (i) MEL
boosts both intra-class compactness and inter-class separability
among known subjects by penalizing the target classes as well
as (ii) maximizes the entropy of negative samples by propor-
tionately scattering their output scores among all classes. MEL
encloses a soft-margin module (M) with a margin m ≥ 0 that
makes the classification more rigorous. Then, given a deep
feature representation z extracted from a face sample x, sc(z)
represents the network activation (logit) for class c:

Mm
c (z) =

esc(z)−m

esc(z)−m +
∑
c′ ̸=c

esc′ (z)
(1)

The formulation of MEL (Jm) only adds a handicapping
penalty m to known classes, indicated in the first term. In
favor of handling negative samples, MEL absorbs the Entropic
Open-Set (EOS) loss [21], where yi stores zi’s corresponding
target class c ∈ C and z̄ ∈ N represents a negative sample:

Jm = −E(zi,yi)∈G logMm
yi(zi)

−Ez̄∈N
1

|C|
∑
c∈C

logMm=0
c (z̄) (2)

MEL maximizes the uncertainty of negative instances by
inducing output activations to lie uniformly distributed over all
known classes c ∈ C. The insight of equalizing logit values for
unknown samples lies behind not knowing anything about their
corresponding class and, therefore, they must hold a similar
likelihood of being assigned to any class [21]. For this reason,
Jm is expected to propagate the entropy learned with negative
data z̄ ∈ N to unknown probe samples during inference.

C. Optimized Mix-Up Feature Augmentation

We introduce an augmentation strategy called Optimized
Mix-Up (OMU) to build artificial negative samples. Differently
from traditional data augmentation transforms, the designed
data synthesis takes place directly at the latent space z
and aims to generate tightened decision boundaries around
known classes. OMU interpolates two latent embedding rep-
resentations zi and zj into a new representation z̄, which is
assigned to the negative set N . Such embedding is generated
in consonance with a mingling coefficient λ that determines
the weight of each original embedding:

z̄ = λ · zi + (1− λ) · zj
s.t. zj = argmax

(zi′ ,gi′ )∈G
cos(zi, zi′) ∧ gi ̸= gi′ (3)

In summary, given feature vectors zi and zj , respectively
associated with identities gi ̸= gj , a synthetic negative feature
z̄ is manufactured in between the closest pairs of known
individuals. Unlike existing works [23, 33] where different
feature embeddings are randomly selected, OMU seeks the
closest cosine-similar representations that, at the same time,
belong to different subjects registered in gallery G.

D. Neural Ensemble Models

The ensemble is composed of multiple binary classifiers
En ∈ E. Each classifier is trained on a different random
bisecting split of gallery identities, where the task is to discern
these two random groups. For training our base model En,
we distribute the identities registered in gallery G into two
equally-sized disjoint splits. The random segregation guaran-
tees that half of the individuals are assigned to P⊙

n (partition
zero) and the other fraction is allocated in P⊕

n (partition one)
so that both splits altogether, defined as Pn = {P⊙

n , P⊕
n },

encompass all the subjects of interest available in the gallery.
Even though all base learners share equivalent architecture
and hyperparameters, each one of them is trained with an
independent and identically distributed arrangement of known
identities as class zero or class one.

Associating subject g ∈ G with one of the two subsets
consists of sampling from a Bernoulli distribution with prob-
ability p = 0.5. This partitioning Pn operates as the function
Bn : G 7→ {⊙,⊕} that attributes subjects g with new labels (⊙
or ⊕). Then, G ⊂ Z+ contains the original gallery identities
and Bn holds the respective binary co-domain for partition
Pn. Theoretically, the probability of any two subjects of
interest sharing the very same sequence of binary attributions
decreases as the neural ensemble size expands.

The neural ensemble E comprises the main block of the
approach since it is the stage in which the feature augmentation
scheme and the open-set loss act together to build a set of
discriminative base models. Each base model En ∈ E consists
of a multi-layer perceptron network with fully-connected lay-
ers. In fact, En incorporates an input layer Li, followed by a
single hidden layer Lh and an output layer Lo. The input layer
takes deep feature representations z extracted with the selected
pretrained deep neural network and, consequently, its input
size varies according to the DNN’s feature layer dimension. As
indicated in Figure 1, the hidden layer Lh employs a rectified
linear unit (ReLU) activation. Layer Lo contains two neurons
and outputs the corresponding activations (a⊙, a⊕) of the two
classes. Each base learner is trained using (2), where we use
the categorical loss for two classes.

E. Inference with Rank of Candidates

When given a test sample xp, we first extract the feature
embedding zp = FΘ(xp) and forward these through our
ensemble of binary classifiers. By construction, the activations
of the base classifier En will be close to zero when an
unknown sample is presented, and large for the corresponding
partition when facing a known sample [21]. Hence, for each
gallery subject g, we can simply add the activations of the
partition the class g was initially assigned to:

sim(zp, g) =
∑
n

aBn(g)
n (zp) (4)

with Bn(g) ∈ {⊙,⊕}. The final similarity scores can be used
to identify the probe by selecting the gallery subject with the
highest score, or rejecting it as unknown when the maximal
score is below a certain threshold θ.



TABLE I
LFW EVALUATION. OPEN-SET ASSESSMENT TO SELECT OPTIMAL VALUES FOR PARAMETERS λ, h AND |E|.

Parameters |E| m λ

DIR/VALUES 0.10 0.30 0.50 0.75 1.00 0.10 0.20 0.30 0.40 0.50 0.55 0.65 0.75 0.85 0.95
TPIR@FPIR = 1.00 0.82 0.92 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.93 0.94 0.94 0.94 0.95 0.94
TPIR@FPIR = 0.10 0.71 0.85 0.86 0.88 0.88 0.86 0.86 0.87 0.87 0.87 0.87 0.87 0.89 0.89 0.87
TPIR@FPIR = 0.01 0.57 0.72 0.73 0.75 0.75 0.73 0.74 0.77 0.76 0.74 0.77 0.77 0.77 0.74 0.75

III. EXPERIMENTS

We developed the approach using PyTorch framework [34]
along with other Python libraries such as Bob [32, 35] for
feature extraction. The neural ensemble operates on represen-
tations obtained with SENET50-VGGFACE2 [27], RESNET50-
AFFFE [28] and RESNET100-ARCFACE [10] architectures.
Training has been carried out on a dedicated server running
Debian Linux on a AMD EPYC 7542 32-core 128-thread CPU,
512-GB RAM, and multiple GEFORCE RTX 2080Ti GPUs.

Evaluation Metric: The open-set Receiver Operating
Characteristics (O-ROC) is the canonical evaluation metric
for open-set biometric systems [36]. The O-ROC plots the
True Positive Identification Rate (TPIR) against False Positive
Identification Rate (FPIR) by varying threshold θ. The TPIR
specifies the probability that subjects from the gallery are
correctly identified whereas FPIR corresponds to the number of
unknown subjects mistakenly identified as someone enrolled
in the gallery. An optimal open-set face identification system
has TPIR of 1 at an FPIR not far from 0, while the closed-set
Rank-1 recognition rate can be obtained as TPIR @ FPIR = 1.

Datasets and Evaluation Protocols: We adopt LFW [29]
as well as IJB-C [30] benchmarks. We incorporate the open-set
LFW partitioning [4] for parameter selection. IJB-C provides a
widely adopted open-set protocol TEST-4 that consists of two
disjoint gallery sets and a probe collection holding identities
from both galleries. We use IJB-C’s gallery A for training
so that probe samples corresponding to identities available
in gallery B become unknown. IJB-C contains mostly high-
quality enrollment data but low-quality probe samples, such
that the application of simple open-set techniques usually does
not transfer from gallery to probes [37].

Evaluated Approaches: We conduct a series of trials in
the interest of verifying the enhancement provided by NAE,
MEL, and OMU. We compare the ensemble with NAN [7], a
compact network used for multi-class classification. We incor-
porate distinct cost functions in the evaluation stage: angular-
based CosFace (CFL) [9], entropy-maximizing Entropic Open-
set (EOS) [21], and the categorical Cross-Entropy Loss (CEL).

A. Parameter Selection
For an unbiased assessment, we select the parameters ob-

tained on LFW to be subsequently used on IJB-C dataset.
Such practice reveals whether the method is sufficiently robust
to generalize across multiple domains and settings. Table I
presents results achieved with AFFFE feature vectors, where we
report TPIR values for various FPIR. The parametric assessment
seeks to find optimal parameters |E|, m and λ, respectively
related to the neural ensemble size, loss function penalty, and
feature augmentation coefficient.

Empirically, we initially set |E| = 0.1 · |G|, m = 0.1
and λ = 0.55, where |G| indicates the gallery size with
610 subjects. When one of the aforementioned parameters is
being modified, the two remaining stand fixed. After fixing
|E| = 0.5 · |G| as a good compromise between speed and ac-
curacy, we modify m and achieve better model discriminability
power for m = 0.3. Results show that setting the augmentation
coefficient λ = 0.85 (i.e. unknown samples are relatively
similar to known samples) increases the ensemble’s ability to
distinguish subjects of interest from unknowns. Finally, we
assess the optimal number of neurons for hidden layer Lh

and, after ranging the number of hidden nodes from 32 to 256
in steps of 16, Lh is empirically set to 160.

B. Neural Network Evaluation

The Neural Adapter Network (NAN) [7] consists of a multi-
layer perceptron with two fully-connected hidden layers. The
first hidden layer encloses 512 neurons with ReLU activation
whereas the second one holds 128 neurons. NAN is trained in
a multi-class fashion for 200 epochs where the output layer
size corresponds to the number of subjects enrolled in the
gallery set. We train the adapter network with four distinct
cost functions adhering to the best hyper-parameter specified
for margin m = 0.3 as shown in Table I. The supplemen-
tary data is synthesized utilizing the designed OMU feature
augmentation method with blending coefficient λ = 0.75.

Figure 2a demonstrates that the addition of synthetic sam-
ples holding equivalent underlying data distribution with the
gallery set can significantly improve NAN’s accuracy. Not only
are the improved results enhanced in the closed-set evaluation
(Rank-1 ) but we can observe the superior performance being
propagated to the O-ROC metric when the false-positive iden-
tification rate decreases. In other words, MEL attains better
identification score when FPIR= 10−3 than CEL or CFL lie
under FPIR= 10−2. The chart also demonstrates the advantage
of using MEL when contrasted with EOS as the proposed loss
function achieves an analogous closed-set recognition rate but
outperforms EOS in the open-set evaluation.

CFL is not one of the most recent margin-based cost func-
tions; still, two recent investigations [38, 39] demonstrated
that it exceeds the results obtained with more sophisticated
algorithms on IJB-C, such as ArcFace [10], CurricularFace [40]
and MagFace [11]. As a result, we believe that CosFace
corresponds to a good representation of most angular-margin
variants of the traditional Cross-Entropy Loss. CFL demands a
special parameter setting as it does not operate with probability
scores. During the evaluation of CFL, we had to double the
number of epochs as well as the quantity of neurons in the
second hidden layer in order to obtain satisfactory results.
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Fig. 2. IJB-C EVALUATION. We compare our proposed approach with several state-of-the-art approaches for open-set face recognition, using four different
loss functions (CEL, CFL, EOS, MEL) and two deep feature representations ARCFACE (ARC) and VGGFACE2 (VGG). (a) indicates the improvement obtained with
the Neural Adapter Network (NAN) [7] trained with MEL over long-established loss functions, whereas (b) shows the advance brought by Neural Ensemble
(NAE) over multi-class NAN and the well-known cosine-similarity metric (COS) in the open-set identification task.

TABLE II
AUGMENTATION ANALYSIS. EVALUATION OF NAN TRAINED WITH CEL OR
MEL ASSOCIATED WITH DIFFERENT AUGMENTATION SCHEMES ON IJB-C.

Detection and Identification Rate (TPIR@)
Method FPIR=1 FPIR=0.1 FPIR=0.01 FPIR=0.001
CEL 0.44 0.23 0.09 0.03
MEL+LFW 0.58 0.23 0.10 0.03
MEL+SFA 0.68 0.53 0.31 0.05
MEL+MMU 0.68 0.52 0.28 0.04
MEL+OMU 0.66 0.51 0.33 0.10

Feature Augmentation Analysis: With OMU’s optimal
blending parameter λ = 0.75 at hand, we conduct a small
set of experiments on NAN with ARCFACE in order to check
how much improvement can be obtained with the novel
augmentation scheme in multi-class tasks. Table II compares
the proposed augmentation strategy with the Manifold Mix-
Up (MMU) [23], Stochastic Feature Augmentation (SFA) [24],
and the addition of original LFW samples as the negative set.
Results show that CEL cannot keep up with cost functions
that explore negative samples. We observe that either SFA or
MMU achieves higher TPIR values under higher false-positive
identifications, that is, when more unknown samples are mis-
takenly identified as a gallery-enrolled subject. OMU, however,
is capable of achieving better detection and identification rate
when FPIR drops.

C. Neural Ensemble Evaluation

Figure 2 provides a comprehensive comparison between
NAN and NAE as both approaches are trained with analogous
feature representations (ARCFACE and VGGFACE2) and cost
functions (CEL, EOS and MEL). Results show the dominant
generalization power of ensembles when compared to multi-
class models. We also adopt COS, an abbreviation for the
cosine-similarity computation between probe samples and the
gallery of templates, as our second baseline. COS is a common
similarity metric for watchlist tasks and is widely employed
in the most modern face recognition applications.

As exposed in Figure 1, the ensemble consists of multiple
binary models containing a single hidden layer with 160
neurons and ReLU activation. NAE exploits synthetic negative
samples derived from the gallery set when combined with
either EOS or MEL. This strategy guarantees a closer data
distribution between original and artificially-made training
data since OMU performs a combination of the two closest
gallery samples carrying different target classes. Figure 2b
shows the experimental evaluation of COS and NAE on IJB-C.
The top four curves comprise experiments with ARCFACE and
the bottom four refer to VGGFACE2 feature representations.

The association of NAE and MEL achieves superior open-
set performance when feature representations are extracted
with ARCFACE and false-positive identifications range between
10−1 and 10−4. Moreover, MEL outperforms EOS across many
FPIR ranges, which shows the importance of learning a more
compact feature space through margin m. Experiments with
VGGFACE2 show that EOS and MEL cost functions attain com-
petitive results as they outperform methods without negative
samples. Apparently, MEL cannot improve the performance
over EOS as we presume that original VGGFACE2 represen-
tations do not include sufficient resources to handle IJB-C’s
low-quality probe samples and assist MEL in the training stage.

Results demonstrate that the proposed approach presents an
outstanding performance regardless of the adopted network
backbone. It reveals that supplementary negative data derived
from the gallery set itself equips the ensemble with relevant
information and boosts the algorithm’s overall performance.
In addition, the proposed Maximal-Entropy Loss seems ca-
pable of driving each standalone base model toward greater
discriminability among known identities as well as escalating
the entropy for unknown samples. The ensemble acts as an
alternate mechanism to prevent the recurrent retraining of
very-deep neural networks every time new individuals are
enrolled in the gallery set. As a consequence, it can be attached
to the penultimate layer of any pretrained DNN, which eases
the maintenance of real-world biometric applications.



IV. CONCLUSION

We introduced three different approaches: a neural ensemble
(NAE), a cost function (MEL), and a feature augmentation
algorithm (OMU). Results show that the three methods com-
bined provide better open-set accuracy under the presence of
extensive false-positive identifications of unknown samples. In
opposition to most works in the literature, NAE, MEL and OMU
did not have their parameters optimized in such a way they
would return favorable results on IJB-C. Instead, the hyper-
parameters were selected during the evaluation of a surrogate
dataset: LFW. We believe that the proposed method is likely
to achieve higher performance on IJB-C dataset if we take its
test set into consideration when tuning the hyper-parameters.

This work also provided an interesting insight: “transform-
ing a gallery/training set with linear-alike perturbations may
provide better generalization capability than external data”. In
fact, one of the experiments showed that synthesizing new
samples derived from the gallery set preserves the underlying
statistics of the training set and, therefore, ends up contributing
more to a model generalization power than extrinsic datasets.
Consequently, gallery sets with numerous identities but few
available samples may not be an obscure limitation anymore
when representative synthetic data can be created to assist loss
functions in learning better weights.
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