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Abstract Facial biometrics tend to be spontaneous,

instinctive and less human-intrusive. It is regularly em-

ployed in the authentication of authorized users and

personnel to protect data from violation attacks. A face

spoofing attack usually comprises the illegal attempt

to access valuable undisclosed information as a tres-

passer attempts to impersonate an individual holding

desirable authentication clearance. In search of such vi-

olations, many investigators have devoted their efforts

to studying either visual liveness detection or patterns

generated during media recapture as predominant in-

dicators to block spoofing violations. This work con-

templates low-power devices through the aggregation

of Fourier transforms, different classification methods,

and handcrafted descriptors to estimate whether face

samples correspond to falsification attacks. To the best
of our knowledge, the proposed method consists of low-

computational cost and is one of the few methods as-

sociating features derived from both spatial and fre-

quency image domains. We conduct experiments on re-

cent and well-known datasets under same and cross-

database settings with Artificial Neural Networks, Sup-

port Vector Machines and Partial Least Squares ensem-

bles. Results show that although our methodology is

geared for resource-limited single-board computers, it

can produce significant results, outperforming state-of-

the-art approaches.
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1 Introduction

Biometrics is the science of automatically identifying

individuals based on their physiological or behavioral

characteristics, ranging from face and fingerprint to iris

and voice. Despite the significant progress of biometric

authentication techniques in the past years, experts de-

clare that novel technologies are constantly exposed to

malicious authentication attacks and can be susceptible

to emerging high-quality fraudulent mechanisms [25].

The term spoofing, also known as copy and presen-

tation attack, represents a serious threat to any bio-

metric system. It eventuates when a criminal manipu-

lates fraudulent data to circumvent the security proce-

dure and gain unauthorized access. More precisely, the

attack occurs when an interloper attempts to imper-
sonate someone who carries a desirable authentication

clearance. As a countermeasure to presentation attacks,

several researchers dedicate their time and efforts in-

specting patterns generated during media recapture as

well as building new databases as an attempt to an-

ticipate spoofing infringements and leverage upcoming

investigations [8,12,21,23,26,36,2].

Human pictures can be effortlessly collected since

a person’s face is probably the most natural biomet-

ric model due to its nonintrusive and obtainable char-

acteristics when compared to others, such as iris and

fingerprint. With the propagation of surveillance cam-

eras and the growing number of individuals distributing

personal images/videos on social media and networks,

it is practically impossible to keep track of a subject’s

face photos as they spread out [17]. The low-cost access

to face images contributes to the increase of criminals

designing presentation attacks to be validated as au-

thentic users, turning face spoofing into a popular way

of deceiving biometric applications.
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The approach proposed herein is an extension of

the work of Vareto et al. [34], which contemplates

a low computational-cost algorithm based on Partial

Least Squares (pls) and Support Vector Machine (svm)

classification models, originally designed for limited-

resource equipment, such as IoT devices. This study

introduces the implementation of an ensemble of Multi-

Layer Perceptron (mlp) networks, provides further de-

tails of the proposed algorithms and contains additional

evaluations on different face spoofing databases. It also

provides a cross-dataset evaluation in behalf of deter-

mining the ensemble’s generalization capability under

previously unexplored media types. Moreover, this pa-

per presents an objective comparison with recent state-

of-the-art works and explores how each learning algo-

rithm performs on each benchmark.

The proposed spoofing detection approach asso-

ciates an ensemble of classification algorithms with sim-

ple handcrafted features extracted from spatial and fre-

quency domains. lbp [24] and hog [9] descriptors ex-

tract spatial information from video frames whereas

glcm [15] obtains features derived from Fourier trans-

forms. In addition, pls [29], svm [32] and mlp [13] clas-

sifiers act as bootstrap aggregating meta-algorithms to

achieve competitive results on the five most prominent

databases, msu-mfsd [35], oulu-npu [6] and siw [20],

to mention a few.

To the best of our knowledge, this is one of the

first studies that associates features extracted from fre-

quency and spatial domains towards the spoofing detec-

tion problem. The leading premise is that interpreting

the relationship between spatial and frequency domains

can be suitable to enhance the accuracy and robustness

of face anti-spoofing applications. We assume that au-

thentic and counterfeit biometric data enclose distinct

noise signatures derived from the media acquisition. In

fact, we believe that the combination of different fea-

ture descriptors contributes to achieving higher perfor-

mance considering that they acquire distinctive char-

acteristics, which can enrich the classifier’s robustness

and generalization potential.

The main contributions of this work are: 1) combi-

nation of three different learning algorithms fitted on

randomly generated subsets in a bootstrap aggregating

mode; 2) association of features extracted in spatial

and temporal domains; 3) efficient method for image

and video-based copy attack receiving as input high-

resolution videos; 4) low complexity and computational

cost algorithm, capable of being deployed in embedded

systems and computers with small processing capabili-

ties; 5) clear study and experimental evaluation of the

proposed approach considering fundamental feature de-

scriptors, such as glcm, hog and lbp.

2 Related Works

There is a large number of works focusing on print

and replay spoofing attacks. Many methods deal with

the design of handcrafted descriptors and learning al-

gorithms as others focus on the neural networks trend.

Many researchers have worked with handcrafted fea-

ture extraction and learning design: Pinto et al. [26]

extract low-level feature descriptors gathering temporal

and spectral information across biometric samples. Wen

et al. [35] developed an algorithm based on the analysis

of image distortion and low-level feature descriptors.

The method consists of an ensemble of svm classifi-

cation algorithms evaluated on cross-dataset scenarios.

Pinto et al. [27] investigate the spatial domain during

the recapture process as it takes over the noise with

Fourier transforms accompanied by visual rhythm al-

gorithms and the extraction of gray-level co-occurrence

matrices. Using color texture analysis and low-level de-

scriptors, Boulkenafet et al. [4,5] detect copy attacks

through the examination of luminance and chrominance

information of each image color channel separately.

In recent years, Deep Neural Networks (dnn) have

confirmed to be effective in a myriad of computer vision

and biometric problems. Li et al. [18] use a hierarchical

neural network with multiple inputs incorporating ei-

ther shearlet or optical-flow-based features. Similarly,

Feng et al. [11] extract deep features from a convolu-

tional neural network to identify real and fake faces. Liu

et al. [20] combine dnn and Recurrent Neural Networks

(rnn) to estimate the depth of face images along with

rppg signals to boost the detection of unauthorized ac-

cess. Valle et al. [33] present a transfer learning method

using a pre-trained dnn model on static features to rec-

ognize photo, video and mask attacks.

Handcrafted features are usually faster and present

lower memory usage than methods based on deep neu-

ral networks, especially when it comes to resource-

limited equipment. Still, they are susceptible of being

restricted to particular datasets domains. Most neural

networks are not invariant to image rotation or scale,

and may struggle to handle scenarios consisting of var-

ious capture devices, lighting conditions and shooting

angles [3]. In addition, top performing dnns tend to

suffer from either low speed or being too large to fit

into single-board computers, preventing their deploy-

ment on remote applications. On the contrary of deep

neural networks, the conventional descriptors as well

as straightforward classifiers employed in our approach

do not require cloud processing services or powerful

dedicated servers since embedded devices are capable

of running the proposed low-cost standalone algorithm

fast enough to be employed in real environments.
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Fig. 1 Description of the suggested solution to face spoofing detection – Training: glcm, hog and lbp descriptors are extracted
from the frames of the videos available for training. Such features are concatenated and used in an ensemble fashion to learn
multiple classification models. Distinct models are learned containing different video samples in each subset. Test: The same
features are extracted from the probe video frames and projected onto all binary classifiers. The procedure then performs a
score fusion on the answers of the classifiers to determine if the probe video refers to an authentic presentation.

Along with the latest anti-spoofing methods, many

databases have been designed in the last decade [37,

8,35]. Boulkenafet et al. [6] created one of the largest

mobile-based benchmarks whereas Liu et al. [20] intro-

duced a dataset covering a large range of expression,

illumination and pose variations. A few masks-based at-

tacks have also been proposed in the past 4 years [22,19,

2]. Despite the variety of benchmarks, many literature

methods end up being restricted to specific datasets

domains, especially when cameras do not have compa-

rable capture quality. Therefore, there is room for im-

provement when it comes to achieving good results on

cross-dataset evaluations.

3 Proposed Approach

This section describes an approach that captures vi-

sual noise signatures in both spatial and frequency do-

mains. The method exploits glcm [15], hog [9] and

lbp [24] descriptors to obtain low-level features. Then,

an ensemble of classifiers is created as we group several

identical classifiers to reinforce the method’s overall effi-

cacy [7]. Figure 1 illustrates the steps that compose the

proposed approach, depicting the extraction of features,

the learning of multiple classifiers and the aggregation

of their response values to provide the final verdict.

Diversified feature descriptors make it possible to

combine color, gradient magnitude and texture infor-

mation. glcm plays an important role examining arti-

facts added to biometric face samples during the recap-

turing process performed by the acquisition sensor [27].

hog captures the structural shape of faces along with

objects resembling still image frames and mobile bor-

ders, that is, regions of abrupt intensity changes around

edges and corners [30]. lbp is capable of obtaining lu-

minance and chrominance information, which are use-

ful for telling real faces from fake ones, especially when

applied to different color channels [4]. In summary, the

proposed set of features combines multiple characteris-

tics to distinguish between live and spoof media.

3.1 Extraction of Feature Descriptors

The process of extracting features inspects separate

spatial colorspaces and the frequency domain in pur-

suance of discriminating spoofing patterns. The proce-

dure starts converting every rgb colorspace video frame

into hsv, ycrcb and gray-scale images. Contrastingly

to the rgb color model, which holds high correlation

between color components, hsv and ycrcb can isolate

luminance from chrominance and are more robust to

variations in illumination [28].

As the rgb video frame is transformed into hsv

and ycrcb images, the method spots the area of in-

terest, which is comprised by the subject’s face. The

approach extracts lbp descriptors from each hsv and

ycrcb image color channel in an attempt to gather dis-

tinctive knowledge about color and texture. As a mat-

ter of fact, lbp computes local texture representation

from all color bands comparing every pixel with its sur-

rounding neighborhood of pixels. Both corresponding

hsv and ycrcb feature descriptors derive from the in-

tegration of each channel’s histogram, which accounts

for the number of times every lbp pattern occurs [5].
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Fig. 2 Comparison among Fourier spectra extracted from different presentation images. Note that there are some artifacts
spread throughout print and replay attacks.

Monochromatic video frames go through low-pass fil-

tering (blurring) techniques for erasing artifacts, reduc-

ing noise and removing Moire patterns, resulting in im-

ages with lessened sharp transitions. Residual noises are

acquired with the difference between a gray-scale im-

age and its slightly blurred version [27]. A logarithmic-

normalized Fourier transform function Flog(v, u) dis-

sects each residual image r(a, b) of size M ×N into its

sine and cosine constituents in which each pixel com-

pounds a frequency from the spatial domain as

Flog(v, u) = log(1 + |
M−1∑
a=0

N−1∑
b=0

r(a, b)e−j2π[
va
M +ub

N ]|).

Due to fast computation, the employed low-level fea-

ture descriptors provide great accuracy vs. speed trade-

off. hog and glcm descriptors scan gray-scale images

and their corresponding spectra, respectively, whereas

lbp descriptor takes in hsv and ycrcb image color

bands. glcm calculates the residual image texture by

producing co-occurring gray-scale values at a given off-

set while hog provides shape information by counting

gradient orientation occurrences using histograms. Fig-

ure 1 illustrates the steps required to build a robust

feature descriptor by concatenating hog and lbp fea-

tures from the spatial-domain with glcm information

from the log-scaled Fourier spectrum.

3.2 Ensemble of Learning Algorithms

Instead of learning a single binary classifier, we learn a

set of models as it reduces the risk of overfitting and

seems to be more appropriate to handle contrasting

chromatic distortions. The classification ensemble con-

sists of collections of Multi-Layer Perceptrons [13], Sup-

port Vector Machines [32] or Partial Least Squares [29]

learning algorithms.

Multi-Layer Perceptron (mlp) is a feed-forward artifi-

cial neural network characterized by several layers of

input nodes connected as a directed graph between in-

put and output layers. Besides being considered a uni-

versal approximator, shallow networks contain reduced

number of parameters, analogous to pls and svm, well-

suited for ensemble of classifiers [16,10].

FEATURE VECTOR
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SigmoidRGB frame

Gray-scale image

. . .

Output 02

Output 01
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Fig. 3 Illustration of the proposed multi-layer perceptron
classifier with three layers. Multiple mlp-based learning algo-
rithms are trained and wrapped up in the bagging structure.

We propose a small network architecture with two

hidden layers and an output layer. As depicted in Fig-

ure 3, each hidden layer is composed of neurons hold-

ing a nonlinear activation function (ReLU) that is con-

nected to every neuron in the subsequent layer. The

output layer consists of a sigmoid function, which is

commonly employed in two-class logistic regression im-

plementations. The network searches for a function f

that relates observable variables x ∈ X to output vari-

ables y ∈ Y so that it satisfies Y = f(X). The function

f is optimized during training time in such a way that

the network output for the observations in X is as close

as possible to the target values in Y .

Support Vector Machine (svm) searches for optimal

separating hyperplanes among classes as it attempts to

maximize the margins between classes’ closest points.

The adopted linear svm considers a training set (X,Y )

of n points of the form (x1, y1), · · · , (xn, yn) where

observation xi is a p-dimensional feature vector, and

yi is either the −1 or +1 label that points out the

class associated with observation xi. The maximum-

margin hyperplane is usually noted as a set of points

x ∈ X satisfying the equation w · x− b = 0, where w is

the normal vector to the hyperplane. The distance be-

tween the separating hyperplane from the positive and

negative support vectors is modeled by the equation
|w·x−b=0|
‖w‖ = ±1

‖w‖ . To that end, 2
‖w‖ is the total dis-

tance between the support vectors in such a way that

maximizing the distance within the support vector hy-

perplanes is equivalent to minimizing ‖w‖.



Face Spoofing Detection via Ensemble of Classifiers towards Low-Power Devices 5

Partial Least Squares (pls) is a fast and effective regres-

sion technique based on covariance and dimensionality

reduction. pls usually works well when the number of

explanatory variables is both high and likely to be cor-

related. Besides, it is robust to unbalanced classes and

supports high-dimensional feature vectors.

pls creates latent variables as a linear combina-

tion of the independent zero-mean variables X and Y .

It searches for latent vectors that can be simultane-

ously decomposed into equations X = TPT + E and

Y = UQT + F in order to identify the maximum co-

variance between these variables. Variables E and F

indicate residuals. Matrix Tn×p portrays latent vari-

ables from feature vectors and matrix Un×p denotes

latent variables from target values. Variables Pp×d and

Q1×d can be compared to the loading matrices from

principal component analysis. We select nipals algo-

rithm [29] to compute the maximal covariance between

latent variables T and U . nipals outputs a matrix of

weight vectorsWd×p and estimates the regression coeffi-

cients vector β using least squares satisfying the follow-

ing equation: β = W (PTW )−1TTY . The pls regression

response for an video frame’s feature vector x is given

by ŷ = ȳ+ βT (x− x̄) where ȳ is the sample mean of Y

and x̄ the average values of X.

3.3 Execution Pipeline

Figure 1 shows that video samples go through a feature

extraction and concatenation procedure before being

presented to the ensemble of classifiers C. This pro-

cess takes place during training and testing phases and,

therefore, are carefully detailed below.

Learning stage. During the training phase, the ma-

trix of observable variables X (obtained from the fea-

ture generation step) and its corresponding vector of

target values Y are set apart to feed the array of clas-

sifiers. The proposed approach produces several binary

learning algorithms, fitted on random subsets of the fea-

ture training set (X,Y ) to create the ensemble C. The

positive class only contains authentic feature vectors

whereas the negative class holds features extracted from

copy attacks. In favor of preventing instability issues

that may arise when dealing with unbalanced training

data, the method guarantees a balanced division within

each classification model since v genuine live and v pre-

sentation attack videos are randomly selected, with re-

placement, out of all video samples available for train-

ing. This process is repeated k times, where k = |C|
is a user-defined parameter that defines the number of

classification models in the ensemble as well as the total

of authentic and counterfeit sampled subsets.
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Fig. 4 Evaluation on all oulu-npu protocols comprising
standalone feature descriptors and their combination.

Prediction stage. Given a probe video V , consisting

of a collection of frames, the proposed method loops

through its image frames and extracts an equivalent

set of visual descriptors. The approach sets up a fea-

ture vector for each probe video’s frame and projects

them onto all classification models. For each frame, the

algorithm computes the ratio of the number of posi-

tive responses attained to the total number of classifi-

cation models k. If most c ∈ C classifiers return posi-

tive responses, it implies that the frame is likely to be

a bona fide (authentic) sample. Otherwise, if they re-

turn negative responses, then the probe sample is likely

to characterize a spoofing attack. As the approach ex-

amines all probe video frames, it keeps record of each

frame’s positive response ratio. Thereafter, it performs

the multi-frame fusion through the computation of the

numerical mean of all positive ratio scores for video V .

A probe video is considered authentic if the averaged

ratio score of all frames satisfies a threshold t. The ap-

propriate value for t tends to be chosen according to a

scenario’s specifications and requirements.

4 Experimental Results

This section contains an objective evaluation of the pro-

posed algorithm, namely, experiments regarding best

parameters selection and literature comparison.

Evaluation Setup. We conduct experiments on Rasp-

berry Pi, Nvidia Jetson Nano and on a Linux virtual

machine to assess the performance of the proposed ap-

proach on different computer architectures. First, we

analyzed the method on a cpu-based machine consist-

ing of eight 2.0 ghz-core processors and 16 gb ram

memory, but no more than 800 mb was required on test

time. Then, we migrated to Raspberry Pi and Jetson

devices, single-board microcomputers with a minimum

specification of 1.2 ghz Quad Core cpu and 1 gb ram

memory. Graphical processing units (gpu) can achieve

higher frame rates; however, it would demand the ac-

quisition of more advanced computer hardware.
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Approach Metric 50 100 200 300

P
ro

to
c
o
l
0
1 mlp

apcer 0.09± 0.17 0.08± 0.10 0.08± 0.17 0.11± 0.19
bpcer 3.20± 3.91 2.22± 1.97 2.03± 1.33 1.89± 1.36

pls
apcer 0.67± 0.48 0.10± 0.13 0.78± 0.69 0.59± 0.46
bpcer 2.91± 3.72 2.34± 1.56 1.51± 1.44 0.75± 0.50

svm
apcer 0.45± 0.29 0.07± 0.08 0.52± 0.42 0.39± 0.28
bpcer 2.06± 2.33 1.65± 0.98 1.07± 0.90 0.53± 0.32

P
ro

to
c
o
l
0
2 mlp

apcer 3.00± 5.20 3.73± 4.75 0.00± 0.00 1.35± 1.54
bpcer 6.68± 4.89 1.11± 0.75 4.33± 2.69 2.30± 1.36

pls
apcer 12.96± 11.06 9.45± 8.55 6.59± 6.96 6.57± 6.55
bpcer 0.88± 0.84 1.31± 0.57 1.41± 1.17 1.16± 0.61

svm
apcer 13.83± 11.19 12.60± 11.41 8.79± 9.28 8.76± 1.39
bpcer 0.97± 0.83 1.75± 0.76 1.88± 1.56 1.54± 0.81

P
ro

to
c
o
l
0
3 mlp

apcer 8.22± 6.24 7.02± 2.95 6.29± 0.70 1.77± 0.06
bpcer 2.17± 1.28 0.97± 0.97 0.89± 0.84 2.44± 1.05

pls
apcer 24.09± 15.97 17.95± 12.45 11.21± 1.66 9.14± 2.66
bpcer 1.01± 0.49 1.37± 0.50 1.62± 0.11 2.04± 0.84

svm
apcer 19.27± 13.63 14.36± 10.63 8.97± 1.41 7.31± 2.39
bpcer 0.89± 0.45 1.21± 0.46 1.42± 0.10 1.80± 0.77

Table 1 Evaluation of all proposed approaches on different siw protocols with an increasing number of classification models.
Note that the method becomes more discriminative with the addition of classifiers.

Feature Descriptors. Three feature descriptors are

employed in this work: glcm [15], hog [9] and lbp [24].

Each one of them searches for specific patterns and

unique characteristics. The glcm texture descriptor is

computed with four directions θ ∈ {0, 45, 90, 135} de-

grees, 16 bins, a distance d ∈ {1, 2}, and six different

texture properties: contrast, dissimilarity, homogeneity,

energy, correlation, and angular second moment. The

hog shape descriptor is set with 96×96 cells and hold-

ing eight orientations. Lastly, the lbp texture descrip-

tor comprises 256 bins, a radius equal to 1, and eight

points arranged in a 3 × 3 matrix thresholded by its

central point. Their low complexity and computational

cost endorse our method so that it can be deployed to

embedded systems.

Spoofing Datasets. For a complete experimental as-

sessment, we adopt datasets with different evaluation

protocols, medium characteristics and variable lighting

conditions. Experiments are conducted on five bench-

marks: casia-fasd [37], msu-mfsd [35], oulu-npu [6],

replay-attack [8] and siw [20]. Both oulu-npu and

siw have been released in recent years and contain full

high-definition videos of multi-ethnic individuals and

featuring 30-fps live and presentation attack videos.

casia-fasd, msu-mfsd and replay-attack are

traditional benchmark databases made up of genuine

live recordings and distinct spoofing attack shots cap-

tured by distinct cameras in different scenarios. casia-

fasd contains 50 individuals, and their analogous coun-

terfeit faces are derived from the original ones. It con-

sists of low, medium and high-quality images and three

presentation attacks, including warped and trimmed

photos, and video attacks. msu-mfsd consists of 280

video clips of photo and video attack attempts to 35

persons, in which authentic and falsified face images

were captured using smartphone, tablet and laptop

cameras. replay-attack is composed of 50 individuals

and 1,300 short recordings of photo and video attack at-

tempts. Copy attacks comprise three different scenarios

under controlled and adverse illumination conditions:

good-quality videos, high-resolution photographs, and

still and motion pictures taken with mobile devices.

oulu-npu encompasses short videos of both real-

access and attack attempts of 15 women and 40 men.

5,940 videos were recorded in three different illumina-

tion conditions using high-quality frontal cameras of

six different mobile devices. The authors came up with

four protocols that take into account unseen conditions

not known during the training stage. The first proto-

col analyzes spoofing detection methods under previ-

ously unseen illumination and background scenes. The

second one evaluates the effect of attacks created with

different printers or displays mediums. Third protocol

studies the influence input camera variations have on

biometric systems whereas the fourth protocol simu-

lates a scenario where all previous three variations are

considered at the same time.

Spoof in the Wild (siw) database contains 4,620 live

and spoof videos from 165 subjects. The live videos are

collected in four sessions with variations of distance,

pose, illumination and expression. Spoofing recordings

consist of printed paper and replay video attacks. The

creators define three different protocols to study un-

usual attack properties: The first protocol evaluates

anti-spoofing applications under different poses and ex-

pressions, where training video samples are restricted to

their first 60 frames. Second protocol examines a sys-

tem’s generalization capability on the different types of

replay attacks following a leave-one-out strategy. Pro-

tocol number three analyzes the performance on un-

known presentation attacks, considering cross testing

from print to replay attack and vice-versa.
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Protocol Method apcer bpcer average

1

Deep models [20] 3.58 3.58 3.58
mlp approach 0.08 ± 0.17 2.03± 1.33 1.05± 0.75
pls approach 0.78± 0.69 1.51± 1.44 1.14± 1.06
svm approach 0.52± 0.42 1.07 ± 0.90 0.79 ± 0.66

2

Deep models [20] 0.57± 0.69 0.57 ± 0.69 0.57 ± 0.69
mlp approach 0.00 ± 0.00 4.33± 2.69 2.16± 1.34
pls approach 6.59± 6.96 1.41± 1.17 4.01± 4.06
svm approach 8.79± 9.28 1.88± 1.56 5.33± 5.42

3

Deep models [20] 8.31± 3.81 8.31± 3.80 8.31± 3.80
mlp approach 6.29 ± 0.70 0.89 ± 0.84 3.59 ± 0.77
pls approach 11.21± 1.66 1.62± 0.11 6.41± 0.88
svm approach 8.97± 1.41 1.42± 0.10 5.19± 0.75

Table 2 Literature comparison, presenting apcer and bpcer results (%) evaluated on the three protocols of siw dataset.

Evaluation Metrics. For a consistent comparability

among spoofing methods, it customary to engage the

iso/iec 30107-3 metrics [1] denominated Bona Fide

Presentation Classification Error Rate (bpcer) and At-

tack Presentation Classification Error Rate (apcer).

The former, apcer, can be understood as the propor-

tion of attacks under the same attack medium incor-

rectly classified as trustworthy. Contrarily, bpcer is

defined as the fraction of genuine presentations incor-

rectly labeled as attack. Both metrics are described in

the following equations:

bpcer =
1

VBF

VBF∑
i=1

(Resi)

apcer =
1

VPA

VPA∑
i=1

(1−Resi)

Note that VPA stands for the number of spoofing at-

tacks whereas VBF expresses the total number of au-

thentic medium presentations. Resi receives the value

1 when the i-th probe video presentation is categorized

as an attack and 0 if labeled as bona fide presentation.

On cross-datasets evaluations, it is customary to

employ Half Total Error Rate, hter = far+frr
2 , which

is half the sum of the False Rejection Rate (frr) and

the False Acceptance Rate (far) [20,31]. The reader

must bear in mind that the closer apcer, bpcer and

hter values get to zero, the more accurate the de-

scribed methods are. apcer and bpcer resemble False

Acceptance and False Rejection Rates, traditionally

employed in the literature when assessing binary classi-

fication methods. Nevertheless, apcer is estimated sep-

arately for each attack medium, such as print or replay,

and the definite performance is made up of the highest

apcer score – indicating the worst-case spoofing attack

scenario.

Ablation Study. Figure 4 presents the proposed pls

approach’s performance on all protocols of oulu-npu

dataset as we consider each one of the three adopted

feature descriptors and their combination. This experi-

ment aims at identifying the descriptors that best con-

tribute to the generation of a robust set of features.

With the ensemble size set to 100, the combination of

hog, lbp and glcm is responsible for achieving at least

an equivalent performance when compared to the best

standalone feature descriptor in each protocol. Note

that the benefits brought by each feature descriptor

vary under different protocols, not being easy to choose

the dominant descriptor. As a result, we employ the

combination of all these feature descriptors in the ex-

periments regarding literature comparison.

In the first parameter analysis, we conduct several

experiments on siw dataset to check how mlp, pls and

svm-based methods respond to the addition of clas-

sification models within the ensemble. More precisely,

this experiment considers homogeneous regression algo-

rithms running in parallel, which are independent from

each other and their outputs are combined in a deter-

ministic averaging process. We search for the ensemble

size k that provides the highest accuracy rate without

compromising our concern for resource-limited single-

board devices. Larger ensemble sizes are likely to re-

quire extra ram memory to store additional working

data as well as take more computational time to train

and make predictions.

According to the results showed in Table 1, as the

number of classifiers augments, the three designed ap-

proach become more discriminative. It can be explained

by the fact that when the size of the ensemble increases,

more prediction responses are taken into consideration

in the positive response ratio step (majority voting).

Using straightforward machine learning algorithms as

building blocks for designing more complex and ro-

bust methods seem to have a positive impact on the

method’s performance. As we check the results, we no-

tice a considerable performance gain when the ensemble

size rises from 50 to 200, but the growth is not main-

tained when raised to 300 models. Therefore, we set the

number of classification models in the ensemble to 200

in all remaining experiments.
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Protocol Method apcer bpcer average

1

Deep models [20] 1.60 1.60 1.60
Gradiant [3] 1.30 12.50 6.90
mlp approach 8.14± 1.53 13.3± 3.43 10.7± 2.48
pls approach 5.50± 2.11 9.79± 3.37 7.64± 2.74
svm approach 8.75± 3.76 16.3± 6.91 12.5± 5.33

2

Deep models [20] 2.70 2.70 2.70
Gradiant [3] 6.90 2.50 4.70
mlp approach 4.67± 0.74 4.61± 1.43 4.64± 1.08
pls approach 2.13 ± 1.07 3.61± 1.21 2.87± 1.14
svm approach 3.61± 1.54 13.3± 6.54 8.45± 4.04

3

Deep models [20] 2.70± 1.30 3.10 ± 1.70 2.90 ± 1.50
Gradiant [3] 2.60± 3.90 5.00± 5.30 3.80± 2.40
mlp approach 1.33 ± 0.71 5.81± 5.33 3.33± 3.26
pls approach 3.12± 2.58 8.51± 6.20 5.81± 4.39
svm approach 8.33± 7.00 11.4± 6.17 9.89± 6.59

4

Deep models [20] 9.31± 5.60 10.4± 6.00 9.50 ± 6.00
Gradiant [3] 5.00 ± 4.50 15.0± 7.10 10.0± 5.01
mlp approach 8.58± 5.79 19.2± 8.97 13.8± 7.38
pls approach 17.8± 9.83 9.37 ± 4.31 13.5± 7.07
svm approach 23.3± 13.4 10.8± 4.82 17.0± 9.11

Table 3 Literature comparison, presenting apcer and bpcer results (%) evaluated on the four protocols of oulu-npu dataset.

Results Analysis. The evaluation of the methods pro-

posed in Section 3 are assessed in consonance with

the protocols available in the literature and following

each dataset’s guidelines. For those databases contain-

ing only training and test sets, like siw, we set aside

ten percent of all samples available in the training set

for validation. Distinctively, oulu-npu and replay-

attack contain validation sets designed for parameter

calibrations. We employ these validation sets to per-

form an automatic selection of threshold t through F1-

score [14]. In this work, F1-score computes the har-

monic mean of a test’s accuracy and punishes extreme

low values as it searches for the value t that optimizes

the fusion of precision and recall.

Tables 2 and 3 present the results obtained on siw

and oulu-npu datasets, respectively, along with other

literature works. The proposed approach achieves state-

of-the-art results on siw’s Protocols 1 and 3 and com-

petitive results on Protocol 2. The ensemble holding

mlp learning algorithms outperforms the ones with pls

and svm classifiers. However, this hegemony does not

repeat in most protocols of the oulu-npu dataset. It

seems that the adopted descriptors could not obtain

features robust enough to provide a dominant general-

ization capability under the different illumination con-

ditions and background scenes available.

A cross-database investigation gives an insight

into the generalization power of countermeasure algo-

rithms. As a result, Table 4 demonstrates the cross-

testing hter [1] performance metric for mlp, pls,

svm approaches and other literature methods on long-

established benchmarks. In this kind of evaluation sce-

nario, an approach is trained and tuned in one among

the available datasets and examined at the others. pls-

based method outperformed both mlp and svm ones

as it achieves a hter of 34.44 ± 3.91 when trained on

siw and tested on oulu-npu, and 17.55 ± 1.47 in the

opposite way. Most datasets consistently carry some

bias irrespective of their protocols due to the inher-

ent and contextual information enclosed in their image

and video data. Therefore, the combination of multi-

form data tends to culminate in a significant accuracy

reduction in comparison to same-database evaluations.

Computational Cost Evaluation. The proposed ap-

proach is devised towards resource-limited single-board

computers in order to reduce network communication.

It contradicts most recent spoofing detection algorithms

in the literature, in which deep neural networks rou-

tinely benefit from long training hours, “unlimited com-

putational resources” and high-bandwidth video trans-

missions. glcm, hog and lbp feature descriptors seem

to contain significant forensic signature information of

image and video-based spoofing detection since results

indicate that the association of spatial and frequency-

based descriptors contributes to achieving both com-

petitive and state-of-the art results.

Most researchers have neglected to work out bio-

metric applications that can operate on low-power de-

vices [11,18,33,20]. In fact, many commercial biomet-

ric systems require powerful dedicated servers or even

cloud processing services. Table 5 demonstrates the

methods’ real-time frame frequency on multiple plat-

forms. Note that the proposed algorithm is able to pro-

cess up to 4.84 ± 0.07 frames per second (fps) when

considering the pls-based ensemble and a Raspberry

Pi 4 environment. For contrasting purposes, it executes

at 26.02±0.58 fps in a conventional computer enclosing

a microprocessing unit (cpu), reached when the num-

ber of classifiers k is set to 100. Such frame rate, 4.842

fps, enables tech developers to implement and run bio-

metric IoT technologies in realistic environments.
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Training Set casia-fasd msu-mfsd replay-attack
Test Set msu-mfsd replay-attack casia-fasd replay-attack casia-fasd msu-mfsd

Color lbp [4] 36.6 47.0 49.6 42.0 39.6 35.2
Color Texture [5] 20.4 30.3 46.0 33.9 37.7 34.1

Spectral [26] − 34.4 − − 50.0 −
Deep Models [20] − 27.6 − − 28.4 −

mlp approach 15.2 ± 1.7 29.3± 2.8 34.6± 3.4 41.8± 2.8 41.3± 1.2 36.9± 1.6
pls approach 19.2± 1.6 30.1± 0.7 28.2 ± 2.7 37.1± 3.2 35.6± 0.4 34.5± 2.3
svm approach 17.3± 1.1 42.6± 2.5 34.8± 2.8 42.6± 1.7 38.3± 2.0 35.4± 1.9

Table 4 Cross-dataset evaluation (%) presenting hter metric on casia-fasd, msu-mfsd and replay-attack datasets.

Platform
Method

mlp approach pls approach svm approach

RaspberryPi 3 1.84± 0.44 2.12 ± 0.04 1.96± 0.07
RaspberryPi 4 4.31± 1.05 4.84 ± 0.07 4.69± 0.06

Jetson Nano 7.73± 2.12 8.64 ± 0.14 8.23± 0.14
Linux Machine 14.77± 2.01 26.02 ± 0.58 24.06± 1.04

Table 5 Real-time frame frequency performance presenting
fps metric on oulu-npu dataset as executed on four different
platforms.

Table 5 consists of results regarding a realistic eval-

uation on oulu-npu dataset videos. To represent a

surveillance scenario, the analysis follows qHD conven-

tion, the standard resolution for mobile devices and

analog cctv systems. All dataset videos are resized to

960×540 pixels, but keeping their original aspect ratio.

Last, we provide the average price paid per fps on the

following microcomputer hardware1:

1. Raspberry Pi 3 Model B ($35.00), probably the

cheapest model on sale;

2. Raspberry Pi 4 Model B ($70.00), including a faster

processor than its predecessor;

3. Nvidia Jetson Nano ($100.00), designed for acceler-

ating machine learning applications;

4. Intel i5 2.8 ghz processor with 16 gb ram ($450.00),

similar to the Linux virtual machine tested;

5. Intel i7 3.2 ghz cpu with 16 gb ram and a GeForce

gtx 1080ti ($1600.00).

The first three specified microcomputers attained

different frame rates and are identical to devices we

have evaluated. The fourth specification is compara-

ble to the Linux virtual machine most of the experi-

ments have been conducted on. As a consequence, we

assume a frame rate of 26.02 for both computers chiefly

because most quality cctv cameras record videos be-

tween 15 and 30 fps. As a result, the lowest price paid

per fps on the aforementioned machines would be ap-

proximately $16.50, $14.46, $11.57, $17.29 and $61.49

(pls approach), respectively. For this reason, running

the designed approach on a single-board computer, such

as Nvidia Jetson Nano, provides better performance per

cost than executing in more robust machines.

1 Prices taken from BestBuy Retail store, and official Rasp-
berry Pi and Nvidia resellers in July 2020.

Recommended Scenarios. After conducting a series

of thorough evaluations, the mlp-based approach has

obtained the most efficient results. It proved to be more

robust on most literature benchmarks as it attained the

lowest presentation error rates. On the other hand, pls

and svm approaches accomplish the best performance

in terms of computational cost, capable of processing

more frames per second. The three proposed approaches

hand over a tradeoff between higher frame rates and

accuracy. The method consisting of an ensemble of mlp

classifiers is recommended to those scenarios in which

spoofing detection demands higher precision and recall

whereas pls/svm ensembles are indicated when it is

possible to hand over a little bit of accuracy in exchange

for a reduced computational cost per frame.

5 Conclusions

This study details a simple low-memory detection al-

gorithm and demonstrates how it performs to emulate

real-world scenarios in an experimental setup. The pro-

posed method proved to be fast, working well on single-

board computers and handling high-resolution video
recordings. Favorably, it was able to achieve state-of-

the-art performance on widely explored databases.

An objective investigation showed how promising

spatial and frequency-based descriptors can be when

combined with an array of learning algorithms. We

work out three approaches (i.e., ensembles comprised

of Multi-Layer Perceptrons, Partial Least Squares or

Support Vector Machines) to conclude that the com-

bination of long-established feature descriptors accom-

plishes impressive performance in same-database set-

tings. Experiments trained and tested on different

datasets show that the accuracy tends to degrade sig-

nificantly, mainly due to their inherent bias.

Regardless of the expressive advances in numerous

areas of biometric science, current presentation attack

detection approaches have shown lack of generalization

in cross-dataset settings, which best represents real-

world scenarios. In the next steps, we plan to add ex-

tra feature descriptors, include other relevant spoofing

datasets and learn spatial-temporal representations.
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